
Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #5

The game loop

• A game is a real-time and interactive
computer application

• Different kinds of time are used

– real time (wall clock time)

– game time (simulated time)

– local timelines (audio, animation time…)

– CPU cycles (functional time)

• The game loop defines how these times are
combined in order to synchronize the game
engine components

3

The game loop

• Most components use local timelines

• So usually only three tasks run concurrently

– The HID input (player interactions)

– The game logic (player / world state, storyline)

– The feedback (rendering, sound, HID output)

• Limitations of real-world technology

– 1-4 processors with limited memory and speed

4

The game loop

source: http://www.notebookcheck.net

source: http://www.notebookcheck.net

• Game data are usually updated in this order

– Player related data update
• Sense player input

• Update player state (according to world restrictions)

– World related data update
• Passive elements (static items)

– Optimized by selection of the logic area of interest

• Logic-based elements (dynamic items)

– Sorted according to relevance (LOD)

– Update state

• AI-based elements (more complex behavior)

– Sorted according to relevance (LOD)

– Sense internal state and goals

– Decision and execution

7

The game logic loop

• Illusion of motion is obtained by a high

frequency rendering loop

8

The rendering loop

while (!quit) {

 // Update the camera view according to input or path

 updateCamera();

 // Update the scene graph (position/orientation of 3D objects)

 updateSceneGraph();

 // Render the scene in “Back Buffer”

 renderScene();

 // Swap Back Buffer with Front Buffer

 swapBuffers();

}

• Graphics rendering as to be performed at
least at 30 FPS to get the illusion of motion

• Frequency of other subsystems may differ

– AI (~10), input (~40), audio (~50), stereovision
(~60), physics (~100), haptic feedback (~3k)

– some need synchronization (for example
physics and graphics)

• The game engine services these
subsystems

– game loop in charge of calling the components
at the right time

9

The real-time constraint

• 1st try: design update/render process in a

single loop (coupled approach)

10

The game loop

Update

Render

• Example of what could be

– Pong (1958 – Atari Inc.)

11

The game loop

int main () {

 initGame(); // Set up initial configuration

 while (true) { // Game loop

 readHumanInterfaceDevices();

 if (quitButtonPressed()) break; // Exit game loop

 movePaddles();

 moveBall();

 if (scored()) {updateScore(); resetBall();}

 renderScore(); // render new game state

 renderPaddles();

 renderBall();

 }

 return 0;

}

• Advantages of the coupled approach

– Both routines are given equal importance

– Logic and presentation are fully coupled

• Disadvantages

– Variation in complexity in one of the two routines

influences the other one

– No control over how often a routine is updated

12

The game loop

• 2nd try: design game loop using two threads

with decoupled frequencies

13

The game loop

Update Render

Game Engine

• Example of what could be

– Pong (1958 – Atari Inc.)

14

The game loop

GameEngine.cpp

initGame(); // Set up initial configuration

startUpdater(60); // Start the update loop (60 Hz)

startRenderer(30); // Start the rendering loop (30 Hz)

Updater.cpp

while (true) { // loop

 Timer(60);

 readHumanInterfaceDevices();

 if (quitButtonPressed()) exit(0);

 movePaddles();

 moveBall();

 if (scored()) {

 updateScore();

 resetBall();

 }

}

Renderer.cpp

while (true) { // loop

 Timer(30);

 renderScore();

 renderPaddles();

 renderBall();

}

• Advantages of the multi-threaded approach

– Both update and render loops run at their own

frame rate

• Disadvantages

– Not all machines are that good at handling

threads (single-CPU, precise timing problems)

– Synchronization issues (two threads accessing

the same data)

15

The game loop

16

The game loop

• 3rd try: design a update/render single

threaded decoupled loop

Update

Render

• Example of what could be

– Pong (1958 – Atari Inc.)

17

The game loop

int main () {

 initGame();

 float lastCall = getTime(); // computer internal clock time

 while (true) { // Game loop

 if (getTime()-lastCall > 1/FREQ) {// timer

 readHumanInterfaceDevices();

 if (quitButtonPressed()) break;

 movePaddles();

 moveBall();

 if (scored()) {updateScore();resetBall();}

 lastCall = getTime();

 }

 // rendering frequency is “as fast as possible”

 renderScore();

 renderPaddles();

 renderBall();

 }

 return 0;

}

• Advantages of the single-threaded

decoupled approach

– Better control than thread and simpler

programming (no sharing and synchronization)

• Disadvantages

– Assumes the tick takes 0 time to complete

– No handling of Alt-Tab scenario

– No nesting of increasing frequencies

18

The game loop

19

The game loop

• 4th try: design a frequency dependent

update/render single threaded decoupled

loop

Update

Render

Game Engine

Update Update

• Example of what could be

– Pong (1958 – Atari Inc.)

20

The game loop

int main () {

 HID.setFrequency(20);

 Paddles.setFrequency(10);

 Ball.setFrequency(10);

 while (true) { // Game loop

 HID.update();

 if (quitButtonPressed()) break;

 Paddles.update();

 Ball.update();

 if (scored()) {updateScore();resetBall();}

 lastCall = getTime();

 // rendering frequency is “as fast as possible”

 Score.render();

 Paddles.render();

 Ball.render();

 }

 return 0;

}

• Advantages of the frequency dependent
single-threaded decoupled approach

– Allow an individual frequency for each entity in
the game

– Same mechanism can be applied to rendering

– Generic automatic registration mechanism

• Disadvantages

– Need to specify the frequency ‘manually’ for
each entity

– The game engine needs an entry point for each
entity to update (might be large)

21

The game loop

• What if the time between two updates is
significantly larger than the required frequency?

– Do nothing special: the game is ‘slowed down’

– Update the game logic according to the actual time
spend since the last call: introduce ‘visual gaps’

• Solutions

– Speed-up update: decrease update frequency (if
applicable), use game logic LoD, etc.

– Speed-up rendering: use graphics LoD, lower the
resolution, perform less special effects etc.

– Can be done automatically with real-time profiling
tools

22

The game loop

• Challenging task to ensure consistency

• Not all libraries and engines are thread-safe

– A piece of code is thread-safe if it only

manipulates shared data structures in a manner

that guarantees safe execution by multiple

threads at the same time

• What subsystem has the control at the

threads?

– input manager, core engine, game logic, thread

creator component?

23

Threads and synchronization

• What is a process?

– An OS entity that provides the context for

• Executing program instructions

• Managing resources (memory, I/O handles, ...)

– A process is protected from other OS processes

via memory management

– Every process has its own address space

24

Process vs. Thread

• Each process must have at least one ‘path

of execution’: main thread

• A thread is a path of execution

– Threads share the same OS address space

• Cheap data exchange

– Threads can individually be stopped, started,

paused, and new threads can be created

– Threads are not ‘protected’: blocking or aborting

a thread could influence the whole program

25

Process vs. Thread

• Multithreading does not automatically

increase performance

– Multiple threads accessing the same data can

result in a lot of synchronization overhead

– But allows independent execution of code

• Win32 thread scheduling

– Multi-processor machines management

– In a cycle, each thread gets allocated a ‘time

slice’

– The threads can have different priorities

26

Threads

27

Win32 thread

#include <windows.h> // including Win32 threads declaration

#include <iostream>

#include <string>

using namespace std;

DWORD WINAPI MyRenderThread(LPVOID n) {

 string name = string(n);

 cout << "Executing render thread " << name << endl;

 while (true) {

 // code to render scene

 }

 return 0;

}

...

28

Win32 thread
...

int main() {

 DWORD iID; // id number

 HANDLE RenderThread; // the Win32 thread

 DWORD waiter; // flag

 // create the thread

 RenderThread = CreateThread(NULL,0,

 MyRenderThread,“rendering”,

 0,&iID);

 // check for creation errors

 if (RenderThread == NULL) {

 DWORD dwError = GetLastError();
 cout << "Error in creating thread: "<< dwError << endl ;
 return 0;
}

 // wait until thread has finished

 waiter = WaitForSingleObject(RenderThread,INFINITE);

 return 0;

}

• The Win32 thread function

– input parameter as void * type

• any amount of data

• type casting to use it in the function

• usually custom struct to be send to thread

– return type as DWORD

29

Win32 thread

DWORD WINAPI threadName (LPVOID parameter) {

 Type typedParameter = (Type)parameter;

 // thread code

 return 0;

}

• The Win32 thread creation

– lpThreadAttributes: pointer to structure to determine whether the handle

can be inherited by child processes (NULL = cannot be inherited)

– dwStackSize: initial size of stack (0 = default size)

– lpStartAddress: pointer to the function to execute

– lpParameter: pointer to the parameters of the function

– dwCreationFlags: flags controlling the thread creation (run time)

– lpThreadId: pointer to variable receiving identifier

– returns
• HANDLE: used for further operations like waiting, pausing, ending...

• NULL if creation failed

30

Win32 thread

HANDLE WINAPI CreateThread(

 __in_opt LPSECURITY_ATTRIBUTES lpThreadAttributes,

 __in SIZE_T dwStackSize,

 __in LPTHREAD_START_ROUTINE lpStartAddress,

 __in_opt LPVOID lpParameter,

 __in DWORD dwCreationFlags,

 __out_opt LPDWORD lpThreadId);

• How to work on threads that are C/C++ OO-

compliant?

– This implementation is Windows-specific

– For Linux or other OS, reimplementation is

required (fork function)

• Solution: use platform-independent OO

thread library, such as OpenThreads, or

Boost::Thread

– include both Win32 and pthread libraries

– selection using pre-processor directives

31

Threads

32

OpenThreads

class MyThread : public OpenThreads::Thread {

 public:

 MyThread() : Thread() {

 // constructor

 }

 virtual ~MyThread() {

 // destructor

 }

 // Overriding thread running method from OpenThreads

 void run() {

 // thread execution code

 }

};

MyThread t;

t.run();

• Two threads accessing the same data

1. Thread A evaluates condition (pointer NULL)

2. Thread A suspended

3. Thread B evaluate condition (pointer NULL)

4. Thread B creates new instance

5. Thread B suspended

6. Thread A creates new instance

 Two instances have been created!

33

Thread issue example

if (!ptrInstance) ptrInstance = new Object();

• Semaphores

• Mutexes and Guards

• Other types of locking mechanisms

– Condition Variables

• notify locked thread from another thread

– Monitor

• uses condition variables

• its methods are executed with mutual exclusion

34

Locking mechanisms

• A semaphore is an object that limits the number

of threads gaining simultaneous access to itself

– dutch inventor Edsger Dijkstra

– keeps an internal count of accessing threads

– may optionally store references to the threads

• Can be used for

– Limiting the number of concurrent database

connections

– Controlling the number of players connected to a

server

– etc.

35

Semaphores

• Three functions available

– Init(int) to initialize the semaphore

– P (Proberen) also called wait, waits for resource

and decrements semaphore

– V (Verhogen) also called signal, makes a

resource available and increments semaphore

36

Semaphores

semaphore.Init(3);

...

semaphore.P();

// do something with semaphore resource

semaphore.V();

• Mutex = mutually exclusive

– Similar to binary semaphore behavior

– Execute code without interruption

– Disadvantages

• unlock required before each return statement

• bad efficiency

37

Mutex

OpenThreads::Mutex mutex; // shared by threads (e.g. static)

mutex.lock();

if (!ptrInstance) ptrInstance = new Object();

mutex.unlock();

• Mutex as an object (Boost::Guard)

38

Guard

class Guard {

 public:

 Guard(OpenThread::Mutex& m) : _mutex(m) {

 _mutex.lock();

 }

 virtual ~Guard() {

 // automatic unlock when out of scope

 _mutex.unlock();

 }

 private:

 OpenThreads::Mutex& _mutex;

};

OpenThreads::Mutex mutex;

Guard guard (mutex);

if (!ptrInstance) ptrInstance = new Object();

• Lock/unlock mutex/guard at different places

in the code to establish critical section

39

Critical section

void MyClass::method() {

 // do some stuff here

 mutex.lock(); // enter critical section

 // do critical (uninterruptable) stuff here

 mutex.unlock(); // exit critical section

 // continue with more stuff

}

 Be very careful with the scope of the

mutex/guard

40

Critical section

OpenThreads::Mutex mutex;

if (!ptrInstance) { // <- not guarded

 Guard guard (mutex);

 ptrInstance = new Object();

}

• Execution of the statement

1. Allocate memory for Object

2. Assign memory location to ptrInstance

3. Construct the object in the memory

41

Critical section

ptrInstance = new Object();

ptrInstance = // step 2

 operator new (sizeof(Object)); // step 1

 new (ptrInstance) Object(); // step 3

• Consider the following scenario

– thread A executes (1) and (2) then is suspended

• ptrInstance is not NULL but instance not constructed

– thread B checks the NULL condition

• do not enter as not NULL

– thread B continues and uses a non fully

initialized object!

• Solutions

– To keep the mutex/guard before the check

– To keep a local copy of ptrInstance

42

Critical section

• Example

– This can lead to deadlock if each thread is
waiting for the other one

– Deadlock can be avoided by careful design!

43

Deadlock

Guard (mutex1); thread A

// do critical stuff here

// <- interrupted here !

Guard (mutex2);

// do very critical stuff here

Guard (mutex2); thread B

// do critical stuff here

// <- interrupted here !

Guard (mutex1);

// do very critical stuff here

• Example

44

Volatile keyword

class GameEntity {

 public:

 void render();

 void update();

 private:

 bool updateFinished;

};

void GameEntity::render() { thread A

 while (!updateFinished) sleep(100); // loops of 100ms

 GraphicsEngine::render(this);

}

void GameEntity::update() { thread B

 updateFinished = false;

 // update the Game Entity

 updateFinished = true;

}

• Due to optimizations, this will not work

– as sleep has no effect on the instance, updateFinished

is not re-evaluated by default

– Thread A will deadlock

• Optimizations can be turned off using the volatile

keyword

• In the GameEntity class

45

Volatile keyword

volatile bool updateFinished;

End of lecture #5

Next lecture

Design Patterns for Games

